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Abstract

Multi-modal keyphrase generation aims to produce a set of
keyphrases that represent the core points of the input text-
image pair. In this regard, dominant methods mainly focus
on multi-modal fusion for keyphrase generation. Neverthe-
less, there are still exists drawbacks. For example, the in-
put text and image are often not perfectly matched, and thus
the image may introduce noise into the model. To address
these limitations, in this paper, we propose a novel multi-
modal keyphrase generation model, which can effectively fil-
ter image noise. In our model, we compute both an image-text
matching score and image region-text correlation scores con-
currently to facilitate multi-granularity image noise filtering.
Specifically, we incorporate correlation scores between image
regions and ground-truth keyphrases to enhance the calcula-
tion of the aforementioned correlation scores. To demonstrate
the effectiveness of our model, we conduct several groups of
experiments on the benchmark dataset.

Introduction
With the growth of social platforms, users increasingly
express views via multi-modal data, including text and
images. Multi-modal keyphrase generation, which derives
keyphrases from such data, has become essential, as illus-
trated in Figure 1. This method, distinct from traditional
text-only approaches (Meng et al. 2017; Ye et al. 2021), har-
nesses both text and image for superior keyphrase extraction,
gaining traction in opinion mining and content recommen-
dation.

In pursuing this task, initial research posited that hash-
tags encapsulate vital information in multi-media content,
leading to their treatment as keyphrases (Zhang et al. 2017,
2019). As such, multi-modal keyphrase generation is often
framed as a hashtag recommendation endeavor. Predomi-
nantly, these works employ a co-attention network to merge
textual and visual tweet data for hashtag suggestions (Zhang
et al. 2017, 2019). Wang et al. (2020) initially utilizes Opti-
cal Character Recognition (OCR) to discern optical charac-
ters from images, followed by an image captioning model to
ascertain implicit image semantics. To optimize multi-modal
data integration, they implement a multi-modal multi-head
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Input Image:

Input Sentence: 

He has now scored at least ⟨number⟩ goals in the last ten 

Laliga Santander seasons! 

Leo Messi;

Laliga Santander

GroundTruth
Keyphrases

OCR Text: 

Rakuten Laliga Santander

Attributes: 

shirt; man; ball; player; red

Traditional 
Model Output

player;

Laliga Santander

Figure 1: An example of multi-modal keyphrase generation.
We can observe that certain image regions may be irrelevant
to the sentence, consequently leading to the introduction of
noise into the model.

attention mechanism, capturing semantic interplay between
modalities.

Despite their achievements, the aforementioned studies
exhibit limitations. They predominantly focus on multi-
modal fusion, often overlooking potential discrepancies be-
tween text and image in social multi-media content. Even
within pertinent text-image pairs, certain image regions may
not align with the text. As depicted in Figure 1, regions high-
lighted by red boxes correlate closely with the text, whereas
others exhibit lesser relevance. Such incongruities can intro-
duce noise, potentially compromising model efficacy. Thus,
optimally leveraging images remains a pressing challenge in
multi-modal keyphrase generation.

In this study, we will introduce a multi-modal keyphrase
generation model equipped with image noise filtering. Over-
all, our model includes three modules: 1) Multi-modal
feature encoding module, which learns the representa-
tions of the input text and image, respectively; 2) Image
noise filtering module that conducts multi granularity im-
age noise filtering to generate a better image representa-
tion; 3) Keyphrase generation module, which generates each
keyphrase in the form of a sequence. Note that we incor-
porate the Image Noise Filtering module into the origi-
nal model. The Image Noise Filtering module introduces a
multi-granularity noise filtering mechanism, which can be
roughly categorized into coarse-grained and fine-grained fil-



tering.
To investigate the effectiveness of our model, we will

conduct several groups of experiments on the benchmark
dataset.

Related Works
Keyphrase Generation. The task of keyphrase genera-
tion has received sustained attention in recent years. The
commonly-used models for keyphrase generation can be
roughly classified into extraction and generation approaches.
Early studies mainly focus on using statistical models to
perform keyphrase extraction (Salton and Buckley 1988;
El-Beltagy and Rafea 2009). With the rapid development
of deep learning, a number of neural network based mod-
els have been proposed for keyphrase generation. Gener-
ally, the frameworks for keyphrase generation can be di-
vided into three categories: 1) One2one (Chen et al. 2018).
This category splits a training instance into multiple pairs,
each consisting of the input text and only one corresponding
keyphrase. During inference, it adopts beam search to pro-
duce candidate phrases and then selects the top-K ranked
ones as the final keyphrases. 2) One2seq (Yuan et al. 2020),
which concatenates all keyphrases in a given order as a
training instance. During inference, the model outputs all
keyphrases as a sequence. 3) One2set (Ye et al. 2021). In
this category, the generation of keyphrases is modeled as a
generation task of a keyphrase set, where keyphrases are in-
dividually generated in parallel.
Multi-modal Fusion. How to effectively fuse multi-modal
information is always a hot research topic. Dominant ap-
proaches can be roughly classified into the following three
categories (Zhang et al. 2020): 1) simple operations such
as concatenation (Anastasopoulos, Kumar, and Liao 2019),
weighted sum with scalar weights (Pérez-Rúa et al. 2019)
and progressive exploration decision fusion (Liu et al. 2017;
Pérez-Rúa, Baccouche, and Pateux 2018); 2) bilinear pool-
ing (Kim, Jun, and Zhang 2018; Ben-Younes et al. 2019);
3) attention-based methods, such as symmetric attention
mechanisms (Zhao, Liu, and Lu 2021), dual attention net-
works (Nam, Ha, and Kim 2017), dynamic gated aggrega-
tion mechanisms (Chen et al. 2022), and dynamic parameter
prediction networks (Noh, Seo, and Han 2016).

Particularly, some studies concentrate on multi-modal fu-
sion in the presence of image noise. For example, Sun et al.
(2020) present a pre-trained multi-modal model based on re-
lationship inference and visual attention. Typically, it con-
tains a gated unit that adjusts the weights of visual fea-
tures during fusion based on the image-text matching score.
Yu et al. (2022) put forward a coarse-to-fine image-target
matching model for the target-oriented (aspect-based) multi-
modal sentiment classification task. With extra manually la-
beled data, they explore two supervised tasks to capture the
image-target matching relations for multi-modal fusion. Ye
et al. (2022) construct a cross-modal relation-aware attention
module, which is equipped with a mask matrix based on the
relevance of text and image regions. This matrix conducts
noise filtering during the self-attention process, improving
the performance of multi-modal machine translation.

Methodology
Before elaborating on our model, we first briefly intro-
duce the formulation of this task. Given a text-image pair
(XS , XI) of the dataset D, multi-modal keyphrase gener-
ation aims to predict a keyphrase set Y . Following (Meng
et al. 2017), we replicate the original input pair multiple
times to ensure that each input pair is associated with one
keyphrase, forming a triplet set {(XS , XI , y)}, where y ∈
Y . In the subsequent subsections, we first give a description
of the architecture of our model, and then describe details of
the model training.

Model Architecture
Figure 2 illustrates the overview of our model. Overall, our
model includes four modules: 1) Multi-modal feature en-
coding module learning the representations of the input text
and image, respectively; 2) Image noise filtering module that
conducts multi-granularity image noise filtering to generate
a better image representation; 3) Keyphrase classification
module that fuses the filtered image and text representations
and then performs keyphrase classification; 4) Keyphrase
generation module, which is based on a pointer network and
generates each keyphrase in the form of a sequence. These
modules are described in detail in the following.

Multi-modal Feature Encoding Module
This module contains an image sub-encoder and a text

sub-encoder, extracting visual features and textual features
respectively. To provide this module with more information
for better keyphrase generation, we first preprocess the input
image to get the OCR information contained in the image.

Specifically, we use the commonly-used PaddleOCR1 to
extract the explicit optical characters (e.g., slogans) from the
image. This additional OCR textual information can serve as
semantic anchors to facilitate cross-modal semantic align-
ment, thus leading to better keyphrase generations. To facil-
itate the subsequent descriptions, we denote the extracted
OCR text as XO. Then, the original input text and OCR
text are sequentially concatenated and fed to the text sub-
encoder. Meanwhile, the input image is encoded by the im-
age sub-encoder.

Text sub-encoder. To distinguish XO from the original
input text XS , we insert a delimited ⟨seq⟩ tokens to indicate
the beginning positions of XO, obtaining the concatenated
input of text modality: XT = XS⟨seq⟩XO. Then, we feed
XT into the text sub-encoder, which is based on Bi-GRU,
learning the token-level semantic representations of XT :

HT = Bi-GRU(Xemb), (1)

where HT∈R|XT |×d1 , d1 denotes the hidden state dimen-
sion, and Xemb is the embedding sequence of XT . Here
we use the sum of word embedding and type embedding to
represent each token. Besides, we use the pre-trained Glove
(Pennington, Socher, and Manning 2014) word embedding
to initialize the input word embedding, and randomly initial-
ize the type embedding. Finally, we obtain a global vector

1https://github.com/PaddlePaddle/PaddleOCR



Figure 2: The overall architecture of our model, including multi-modal feature encoding module, image noise filtering module,
keyphrase classification module and keyphrase generation module.

representation of text modality via max-pooling operation:
MT = Max-pooling(HT ).

Image sub-encoder. Following common practice (Sun
et al. 2020), we employ the pre-trained model VGG19 (Si-
monyan and Zisserman 2015) to extract the visual features
of each input image. Concretely, we first resize each image
to 224 × 224 pixels and feed it to the VGG19 model. The
last-layer output is a 7 × 7 × 512-dimensional vector con-
taining 49 local spatial region features for each image. That
is, the visual feature of each region is represented as a 512-
dimensional vector. To further use these visual features, we
perform flattening and linear projection on these visual fea-
tures:

HI = flatten(VGG19(XI))WI + bI , (2)
where HI ∈ R49×d1 and flatten(·) is a function reshaping the
7× 7× 512-dimensional vector to a 49× 512-dimensional
one. Additionally, WI ∈ R49×d1 and bI ∈ R49×d1 are learn-
able parameter matrices.

Image Noise Filtering Module
In this module, we explore two cross-modal matching

strategies to filter the noise of each input image, obtaining
a filtered image representation. Via the combined effect of
the two cross-modal matching strategies, this module may
help the model focus on key regions for keyphrase genera-
tion while avoiding the interference of image noise.

Image-text matching. Using this strategy, we obtain a
score indicating the semantic matching degree between the
whole image and the input text. Specifically, we first use a
multi-head cross-attention function to the fusion representa-
tion Hc:

Hc = MultiHead(MT ,HI ,HI), (3)

where MultiHead(*) is a multi-head cross-attention func-
tion, the global textual feature MT is used as the query, and
the visual feature HI works as the key and value.

On the top of Hc, we stack a fully connected (FC) layer to
perform image-text matching, where a matching score sc is
acquired and then used in conjunction with the subsequent
image region-text matching strategy to filter image noise.

Image region-text matching This strategy is used to fil-
ter the irrelevant regions of the input image. To achieve this,
we first project the visual feature HI and the global textual
feature MT into a shared semantic space: HT = WTMT ,
HI = WIHI , facilitating the subsequent calculation of their
semantic correlation. Here, HI represents the flattened rep-
resentation of 7 × 7 image region features, while W∗ are
learnable parameter matrices.

Subsequently, we calculate the image region-text correla-
tion matrix A as fellow:

A = FFN
(
(HT ) · (HI)

⊤
√
d2

+ J × sc

)
, (4)

where FFN(*) is a feedforward network, d2 is the dimension
of vector representation in the shared semantic space, the el-
ement Al1,l2 indicates the semantic matching score between
the input text and the (7×l1+l2)-th image region, and J is
an all-ones matrix. Note that we use the above-mentioned
image-text matching score sc to smooth the matrix A.

Lastly, we use a Sigmoid function to produce a filtered
image representation ĤI :

ĤI = Sigmoid(A)⊙HI , (5)
where ⊙ is the element-wise multiplication.

Keyphrase Classification Module
Following (Wang et al. 2020), we also regard each

keyphrase in training data as a discrete label and directly
use a classifier to predict keyphrases.

Concretely, we first use a multi-head cross-attention to
effectively fuse the filtered visual and textual features, and
then use an FFN with residual connection and layer normal-
ization to obtain a fused vector Hf :

Hf = FFN(MultiHead(MT , ĤI , ĤI)), (6)
where the global textual feature MT is used as the query and
the filtered visual feature ĤI serves as key and value.

Finally, on the basis of Hf , we construct a classifier based
on a two-layer multi-layer perception (MLP) to produce a
keyphrase distribution dcla as follows:

dcla = Softmax(MLP(Hf )). (7)



Keyphrase Generation Module
As implemented in (Wang et al. 2020), we introduce the

pointer network (Gu et al. 2016) to generate each keyphrase
y as a sequence. Typically, by equipping with an extended
copy mechanism, this module models the token-level gen-
eration probability p(yj) at each timestep j as the weighted
sum of two types of probabilities:

Prediction probability pp(yj). To model this probability,
we update the decoder hidden state sj as follows:

sj = GRU(yj−1, sj−1, cj), (8)

cj =

|XT |∑
i=1

αj,ihi, (9)

αj,i = Softmax(V ⊤
α tanh(Wα[sj ;hi])), (10)

where yj−1 is the output at timestep j-1, cj is the context
vector, αj,i is the normalized weight that measures the com-
patibility between sj and hi, Vα and Vα are learnable pa-
rameter matrices.

Next, we further introduce the fusion vector Hf to pro-
duce a token distribution pp(yj) as follows:

pp(yj) = Softmax(Wp[yj−1; sj ; cj + Hf ]), (11)

where Wp is a learnable parameter matrix.
Copy probability Pc(yj). To generate better keyphrases,

we also adopt an extended copy mechanism to simultane-
ously leverage the words of concatenated input text XT and
the classifier predictions dcla.

Specifically, we first retrieve the top-5 classifier predic-
tions and transform each prediction into a sequence of words
w = w1, . . . , w|w|. Afterwards, we use a softmax func-
tion to normalize the corresponding classification logits into
word-level distributions {βk}|w|

k=1. Finally, we define the
copy probability pc(yj) as

pc(yj) = λc ·
|XT |∑

i:xi=yj

αj,i+(1−λc) ·
|w|∑

k:wk=yj

βk, (12)

where λc is a hyper-parameter used to decide whether to
copy from the concatenated input text or the classification
predictions.

With the above two kinds of probabilities, we obtain the
generation probability p(yj) as follows:

p(yj) = λpp(yj) + (1− λ)pc(yj), (13)
λ = Sigmoid(Wλ[yj−1; sj ; cj + Hf ]), (14)

where λ is a soft switch and Wλ is a learnable parameter
matrix.

Training Framework
We propose a two-stage training framework to train our
model.

Stage 1. During this stage, we first pre-train the multi-
modal feature encoding module, image noise filtering mod-
ule and keyphrase classification module. To this end, we
define the following training objective involving three loss
items:

L1 = Litm + Lirtm + Lcla, (15)

where Litm, Lirtm, Lcla are loss items proposed for three
tasks. We will describe in detail these three losses, respec-
tively.

The loss item for image-text matching: Litm. As described
in previously, we introduce an image-text matching task to
perform coarse-granularity image noise filtering. Given an
additional dataset Ditm = {(XT , XI)}, we define the fol-
lowing cross-entropy loss:

Litm = −
∑

(XT ,XI)∈Ditm

log(pitm(XT , XI)), (16)

where pitm(∗) is the probability of correct classification.
The loss item for image region-text matching: Lirtm.

As mentioned above, for each training text-image pair
(XS , XI , y) ∈ D, we introduce a correlation matrix A to
perform fine-granularity image noise filtering. To accurately
model A, we encode the ground-truth keyphrases and cal-
culate the correlation score between each region of the input
image and ground-truth keyphrases according to Equation 4,
forming a correlation matrix Agt. Afterwards, we use Agt as
supervisory signals to train A by introducing a MSE(Mean
Squared Error) loss to minimize their divergence:

Lirtm =
∑

(XS ,XI)∈D

MSE(A,Agt). (17)

The loss item for keyphrase classification: Lcla. To train
the previously-mentioned keyphrase classifier, we define the
following standard cross-entropy loss:

Lcla = −
∑

(XS ,XI ,y)∈D

log(dcla), (18)

where dcla denotes the predictions of keyphrase classifica-
tion, defined as Equation 7.

Stage 2. In this stage, we optimize the model for the
keyphrase generation task. Following common practice
(Meng et al. 2017), we design Lgen as a token-level cross-
entropy loss:

Lgen =
∑

(XS ,XI ,y)∈D

|y|∑
j=1

log(p(yj)). (19)

EXPERIMENT
Benchmark Datasets

In our experiments, we use two datasets. One is the TRC
dataset2, which is used to train the model via the image-
text matching task. The other is the dataset for multi-modal
keyphrase generation collected by Wang et al. (2020). This
dataset includes 53,701 English tweets, each of which com-
prises a distinct text-image pair, with user-annotated hash-
tags serving as keyphrases.

2https://github.com/danielpreotiuc/text-image-relationship/



Implementation Details
To ensure fair comparisons, in the experiments, we use the
setting used in (Wang et al. 2020) which is our most impor-
tant baseline. Specifically, we select the top 45K most fre-
quent words as the vocabulary for keyphrase generation and
4,262 keyphrases of the training data as candidate ones in the
classifier. When constructing our encoder and decoder, we
initialize the input word embeddings with 200-dimensional
GloVe (Pennington, Socher, and Manning 2014) ones, and
set their hidden state dimensions as 300. To encode the input
image, we use 49 grid-level VGG features, where each grid
is represented as a 512-dimensional vector. During training,
we use Adam (Kingma and Ba 2015) to optimize the model,
with an initial learning rate of 10−3. Additionally, we per-
form dropout(Srivastava et al. 2014) with a rate of 0.1 to
enhance the robustness of our model. Particularly, we em-
ploy early stopping to stop the model training according to
the performance on the validation dataset. During inference,
we apply beam search with a beam size of 10 to produce a
ranked list of keyphrases. We conduct the experiments re-
peat five times using different random seeds, and report the
averaged results.

Metrics Following previous studies (Meng et al. 2017;
Wang et al. 2020), we use the commonly-used macro-
average F1@K to evaluate the model performance, where
K is 1 or 3. Besides, as implemented in (Chen et al. 2019),
we measure the keyphrase orders with the mean average pre-
cision (MAP) for the top-5 predictions.

Baseline
In our study, we compare various baseline models catego-
rized into three main groups: Image-only models, Text-only
models, and Text-image models. In the Image-only category,
we have the VGG model, using a pre-trained VGG encoder
(Anderson et al. 2018), and the BUTD model, which em-
ploys a bottom-up attention mechanism (Anderson et al.
2018). For Text-only models, we consider classification-
based models like AVG, MAX, and TMN (Zeng et al. 2018),
as well as generation-based models including ATT (Bah-
danau, Cho, and Bengio 2015), COPY (See, Liu, and Man-
ning 2017) and TOPIC (Wang et al. 2019). Lastly, in the
Text-image category, we evaluate CO-ATT (Zhang et al.
2017), BAN (Kim, Jun, and Zhang 2018) and M³H-ATT
(Wang et al. 2020), with the latter achieving a strong perfor-
mance in multi-modal keyphrase generation.

Main Results
Table 1 shows the performance of our model and baselines
on the dataset collected by Wang et al. (2020). Here we can
obtain the following conclusions:

First, our model surpasses all baselines in terms of all met-
rics. Specifically, our model outperforms M3H-ATT by 1.2
points in terms of F1@1, 0.8 points in terms of F1@3, and
1.1 points in terms of MAP@5. Note that M3H-ATT is one
of the high-performance models in multi-modal keyphrase
generation. This result strongly confirms the effectiveness
of our model.

Table 1: Performance comparison for multi-modal
keyphrase generation task. ∗ indicates the results are
directly cited from (Wang et al. 2020).

Models F1@1 F1@3 MAP@5

Image-only models

VGG∗ 15.69 13.67 19.70
BUTD∗ (Anderson et al. 2018) 20.02 16.97 24.73

Text-only models

AVG∗ 35.96 27.59 41.84
MAX∗ 38.33 28.84 44.15
TMN∗ (Zeng et al. 2018) 40.33 30.07 46.28

ATT∗ (Bahdanau, Cho, and Bengio 2015) 38.36 27.83 43.35
COPY∗ (See, Liu, and Manning 2017) 42.10 29.91 46.94
TOPIC∗ (Wang et al. 2019) 43.17 30.73 48.07

Text-image models

CO-ATT∗ (Zhang et al. 2017) 42.12 31.55 48.39
BAN∗ (Kim, Jun, and Zhang 2018) 38.73 29.68 45.03
M3H-ATT∗ (Wang et al. 2020) 47.06 33.11 52.07

Our text-image model

Our Model w/o Litm 47.76 33.66 52.94
Our Model w/o Lirtm 48.03 33.46 52.88
Our Model 48.19 33.86 53.28

Second, the multi-modal models outperform both image-
only and text-only models, echoing the results reported in
(Wang et al. 2020). Our model exhibits superior perfor-
mance compared to all the text-only keyphrase generation
methods. Thus, we confirm that the complementarity be-
tween image and text enables our model to effectively cap-
ture crucial information for multi-modal keyphrase genera-
tion.

Third, the text-only models perform better than the image-
only ones, showing that each input text provides more cues
than the input image, and therefore can contribute more
to keyphrase generation. For this result, we speculate that
the inferior performance of image-only models may be at-
tributed to the feature sparsity and noise in the input image,
making it challenging for models to acquire effective fea-
tures.

Finally, we also conduct ablation studies to analyze our
model. Our model w/o Litm conducts coarse-granularity
image noise filtering without supervisory information and
causes a performance decline. Our model w/o Lirtm does
not use the correlation matrix Agt between ground-truth
keyphrases and image regions to supervise the training of the
correlation matrix. The performance degradation confirms
our hypothesis that the correlation matrix Agt can guide the
model to focus on key regions.

CONCLUSION

In this paper, we perform image-text matching and image
region-text matching to effectively filter image noise. We
conduct several groups of experiments on the commonly-
used dataset. Experimental results and in-depth analyses ver-
ify the effectiveness of our model.
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